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ABSTRACT

Here we have provided additional figures to support our results and main conclusions.

Supplementary figures
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Figure 1. Increased bursting reduces the frequency of input oscillations that can be tracked. In
unconnected networks of different number of modified-SSBNs, we test how well sinusoidally modulated
input of different frequencies could be followed by the population. For higher input frequencies, it is
seen that for increased number of spikes per burst are less able to follow the input. The rasters and
the z-scored PSTHs for different number of spikes per burst for a fixed sinusoidal input (120Hz) are
shown in (A) and (B). (C) For a fixed size of the neuron ensemble (N = 100) the normalized power
of the peak frequency drops and saturates to a very small value (≈ 0) for higher frequencies of the
sinusoidally modulated input. (D) The map shows the maximum frequency of the input that can be
tracked by different combinations of number of independent neurons in the population and the
number of spikes per burst. While the value of the frequency drops with the increase in the number of
spikes per burst, it can be compensated for by increasing the number of neurons in the ensemble.
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Figure 2. Figure caption continued on the following page

3/5



Figure 2. Effect of addition of bursting neurons on the state of network composed of SSBN. (A)
Evolution of spectral entropy(HS) for a network which is initially synchronous and changes to being
asynchronous with the addition of bursting neurons,added
(g = 11,d = 2ms,η = 10500−11500 sp/s,JE = 0.1mV ).(B) a network in an asynchronous state that
continues to remain asynchronous with the addition of bursting neurons
(g = 5,d = 2.0ms,η = 4000−5000sp/s,JE = 0.04mV ) , C qualitatively synchronous activity can
remain synchronous even when inhibitory neuron firing patterns are changed
(g = 8,d = 4ms,η = 8500−9500sp/s,JE = 0.1mV ) and (D) an initially asynchronous activity in the
network that becomes synchronous with the addition of bursting neurons
(g = 6,d = 2ms,η = 4500−5500sp/s,JE = 0.1mV ). (E) The Fano Factor values of the different
transitions are plotted against the changes in the fraction of bursting neurons. The different colours
correspond to the different state transitions observed (colours marked in the titles of A,B,C and D).
(F) The rasters illustrating the four types of transitions are shown in a phase space of FF and the
difference in HS. The difference in HS is the difference in spectral entropy between the initial and final
points of each transitions.The initial rasters are marked in yellow and the final rasters are marked in
black in the corresponding panels A,B,C and D. The FF values marked are the FF values of the
initial points.

Figure 3. A simple network producing an external input induced spiking of a presynaptic BS
population. This BS population acted as the inhibitory presynaptic input to a regular LIF neuron. The
membrane potential of this LIF neuron was maintained very close to the threshold by an external
poissonian input. The percentage change in the variance of the membrane potential (A) and firing
rate (B) of the postsynaptic LIF neuron with the varying number of spikes per burst in the presynaptic
SSBN population is plotted. The increase in the size of the presynaptic population decreased the
amount of changes in the variance of the membrane potential and the firing rate of the post-synaptic
LIF with the change in the number of spikes per burst.
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Figure 4. Burstiness of single neurons changes with network state. The number of spikes per burst
that a BS neuron(Izhikevich model) produces depends on the state of the network. To quantify the
burstiness of a neuron we use the Bursting Index1 This measure assigns a rank Rn to every interspike
interval (ISI) of a spike train. The lowest value of an ISI has zero rank. If the ISIs are independent,
the value of each ISI can be considered to be a random number drawn from a uniform distribution
between 1 and N, where N is the total number of ISIs. If a spike train contains a burst, then this
assumption does not hold anymore. The Bursting Index is equivalent to the Rank Surprise (RS)
statistic, which captures the discrepancy between the case of having independent and uniformly
distributed sequence of variables Rn, ...,Rn+q−1 and the actual outcome in the case of a burst
consisting of q number of spikes. It is given given by RS =−log(P(Tq ≤ rn + ...+ rn+q−1)) where rn is
the observed value of rank Rn. Tq is the sum of q discrete uniform variates between 1 and N. In the
above figure, the average bursting index of BS neurons for different η and g values are shown in a
randomly connected network of excitatory-BS neurons (Izhikevich model).
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